El problema de asignación debe su nombre a la aplicación particular de asignar hombres a trabajos ( o trabajos a máquinas), con la condición de que cada hombre puede ser asignado a un trabajo y que cada trabajo tendrá asignada una persona.
La condición necesaria y suficiente para que este tipo de problemas tenga solución, es que se encuentre balanceado, es decir, que los recursos totales sean iguales a las demandas totales.
El modelo de asignación tiene sus principales aplicaciones en: Tabajadores, Oficinas al personal, Vehiculos a rutas, Máquinas, Vendedores a regiones, productos a fabricar, etc.
2. RESTE EL VALOR MAS PEQUEÑO EN LA COLUMNA DE CADA UNA DE LAS COLUMNAS.
3. TRAZAR SEGMENTOS: Este es el criterio de decisión de asignación, es decir
A) Sí el número de segmentos es = m, entonces podemos asignar, recuerda que m=n asignaciones. Un Segmento es una línea vertical u Horizontal que se va a trazar a lo largo de toda la fila o toda la columna, no se pueden trazar segmentos en forma diagonal.
B) Caso contrario ir al paso 4
4. ATENDER LOS SIGUIENTES INCISOS:
A) Seleccione la posición del dato menor de los no segmentados y restelo a los no segmentados, (esto hará que se generen nuevos ceros)
B) Localizar los datos en donde se INTERSECTAN los segmentos, y sumar el dato menor seleccionado.
C) El resto de los datos segmentados quedan EXACTAMENTE igual.
5. REPITA EL PASO 3
Casos especiales del modelo de asignación
Cuando la oferta y la demanda son desiguales, se asigna una actividad ficticia con un costo de cero para mantener la condición de método que deben ser igual número de ofertas y demandas
Problemas de maximización.
Considere un problema de asignación en el que la respuesta a cada asignación es una utilidad en vez de un costo. Considere la matriz de utilidades del problema como la característica nueva la cual consiste en que el número que aparece en cada celdilla representa un beneficio en lugar de un costo.
Problemas con asignación inaceptable.
Supóngase que se está resolviendo un problema de asignación y que se sabe que ciertas asignaciones son inaceptables. Para alcanzar esta meta, simplemente asigna un costo arbitrariamente grande representado mediante la letra M . M es un número tan grande que si se le resta un número finito cualquiera, queda todavía un valor mayor que los demás.
Cuando la oferta y la demanda son desiguales, se asigna una actividad ficticia con un costo de cero para mantener la condición de método que deben ser igual número de ofertas y demandas
2. Problemas de maximización.
Considere un problema de asignación en el que la respuesta a cada asignación es una utilidad en vez de un costo. Considere la matriz de utilidades del problema como la característica nueva la cual consiste en que el número que aparece en cada celdilla representa un beneficio en lugar de un costo.
3. Problemas con asignación inaceptable.
Supóngase que se está resolviendo un problema de asignación y que se sabe que ciertas asignaciones son inaceptables. Para alcanzar esta meta, simplemente asigna un costo arbitrariamente grande representado mediante la letra M . M es un número tan grande que si se le resta un número finito cualquiera, queda todavía un valor mayor que los demás.
No hay comentarios:
Publicar un comentario