El método de integración por partes permite calcular la integral de un producto de dos funciones aplicando la fórmula:
Las funciones logarítmicas, "arcos" y polinómicas se eligen como u.
Las funciones exponenciales y trígonométricas del tipo seno y coseno, se eligen como v'.
Ejemplos
Si al integrar por partes tenemos un polinomio de grado n, lo tomamos como u y se repite el proceso n veces.
Si tenemos una integral con sólo un logaritmo o un "arco", integramos por partes tomando: v' = 1.
Si al integrar por partes aparece en el segundo miembro la integral que hay que calcular, se resuelve como una ecuación.
No hay comentarios:
Publicar un comentario