jueves, 18 de octubre de 2012

DIVISION DE POLINOMIOS, MEJOR EXPLICACION

DIVISIÓN DE POLINOMIOS

La división algebraica es la operación que consiste en hallar uno de los factores de un producto, que recibe el nombre de cociente dado el otro factor, llamado divisor, y el producto de ambos factores llamado dividendo.

De la definición anterior se deduce que el dividendo coincide con el producto del divisor por el cociente. Así por ejemplo, si dividimos , se cumplirá que
    

Si el residuo no fuera igual a cero, entonces:

Para efectuar una división algebraica hay que tener en cuenta los signos, los exponentes y los coeficientes de las cantidades que se dividen.
(+)÷(+)=+
(–)÷(–)=+
(+)÷(–)=–
(–)÷(+)=–


División de un monomio por otro
Para dividir dos monomios se divide el coeficiente del dividiendo entre el coeficiente del divisor y a continuación se escriben las letras ordenadas alfabéticamente, elevando cada letra a un exponente igual a la diferencia entre el exponente que tiene en el dividendo  y el exponente que tiene en el divisor. El signo del cociente será el que corresponda al aplicar la regla de los signos.

Ejemplo:
Dividir  
Solución:

División entre fracciones
En este tipo de división se cumplen las mismas reglas que con la división de monomios y las reglas de división de fracciones de la aritmética.
  • Se aplica ley de signos
  • Se multiplica el dividendo del primer termino por el divisor del segundo para crear el dividendo de la division, y el divisor del primero por el dividendo del segundo para crear el divisor de la division (esto se llama división cruzada)
  • Se divide el coeficiente del dividendo entre el coeficiente del divisor
  • Se aplica ley de los exponentes tomando las letras que no se encuentren como elevadas a cero (nº = 1), y se escriben en orden alfabético.
Ejemplos:
División de polinomios entre monomios.
Para dividir un polinomio entre un monomio se distribuye el polinomio sobre el monomio, esto se realiza convirtiéndolos en fracciones.
Pasos:
  • Colocamos el monomio como denominador de él polinomio.
  • Separamos el polinomio en diferentes términos separados por el signo y cada uno dividido por el monomio.
  • Se realizan las respectivas divisiones entre monomios tal como se realizo en el capitulo anterior.
  • Se realizan las sumas y restas necesarias.

Ejemplos:
División entre polinomios.
En este tipo de división se procede de manera similar a la división aritmética los pasos a seguir son los siguientes.
  • Se ordenan los polinomios con respecto a una misma letra y en el mismo sentido (en orden ascendente u orden descendente), si el polinomio no es completo se dejan los espacios de los términos que faltan.
  • El primer termino del cociente se obtiene dividiendo el primer termino del dividendo entre el primer miembro del divisor.
  • Se multiplica el primer término del cociente por todos los términos del divisor, se coloca este producto debajo de él dividendo y se resta del dividendo.
  • El segundo termino del cociente se obtiene dividiendo el primer termino del dividendo parcial o resto (resultado del paso anterior), entre el primer termino del divisor.
  • Se multiplica el segundo término del cociente por todos los términos del divisor, se coloca este producto debajo de él dividendo parcial y se resta del dividendo parcial.
  • Se continua de esta manera hasta que el resto sea cero o un dividendo parcial cuyo primer termino no pueda ser dividido por el primer termino del divisor.
Cuando esto ocurre el resto será el residuo de la división.
La intención con este método de división es que con cada resta se debe eliminar el termino que se encuentra mas a la izquierda en el dividendo o dividendo parcial.
Ejemplos:

miércoles, 17 de octubre de 2012

MODELO DE ASIGNACIÓN

Los problemas de asignación presentan una estructura similar a los de transporte, pero con dos diferencias: asocian igual número  de origenes con igual número de demandas y las ofertas en cada origen es de valor uno, como lo es la demanda en cada destino.
El problema de asignación debe su nombre a la aplicación particular de asignar hombres a trabajos ( o trabajos a máquinas), con la condición de que cada hombre puede ser asignado a un trabajo y que cada trabajo tendrá asignada una persona.
La condición necesaria y suficiente para que este tipo de problemas tenga solución, es que se encuentre balanceado, es decir, que los recursos totales sean iguales a las demandas totales.
El modelo de asignación tiene sus principales aplicaciones en: Tabajadores, Oficinas al personal, Vehiculos a rutas, Máquinas, Vendedores a regiones, productos a fabricar, etc.
 
 


ETAPAS DEL METODO, ALGORITMO HUNGARO
1. RESTE EL VALOR MÁS PEQUEÑO DE LA FILA EN CADA UNA DE LAS FILAS
2. RESTE EL VALOR MAS PEQUEÑO EN LA COLUMNA DE CADA UNA DE LAS COLUMNAS.
3. TRAZAR SEGMENTOS: Este es el criterio de decisión de asignación, es decir
A) Sí el número de segmentos es = m, entonces podemos asignar, recuerda que m=n asignaciones. Un Segmento es una línea vertical u Horizontal que se va a trazar a lo largo de toda la fila o toda la columna, no se pueden trazar segmentos en forma diagonal.
B) Caso contrario ir al paso 4
4. ATENDER LOS SIGUIENTES INCISOS:
A) Seleccione la posición del  dato menor de los no segmentados y restelo a los no segmentados, (esto hará que se generen nuevos ceros)
B) Localizar los datos en donde se INTERSECTAN los segmentos, y sumar el dato menor seleccionado.
C) El resto de los datos segmentados quedan EXACTAMENTE igual.
5. REPITA EL PASO 3
Casos especiales del modelo de asignación
Casos especiales del modelo de asignación
Oferta y demanda desiguales.
Cuando la oferta y la demanda son desiguales, se asigna una actividad ficticia con un costo de cero para mantener la condición de método que deben ser igual número de ofertas y demandas
  Problemas de maximización.
Considere un problema de asignación en el que la respuesta a cada asignación es una utilidad en vez de un costo. Considere la matriz de utilidades del problema como la característica nueva la cual consiste en que el número que aparece en cada celdilla representa un beneficio en lugar de un costo.
  Problemas con asignación inaceptable.
Supóngase que se está resolviendo un problema de asignación y que se sabe que ciertas asignaciones son inaceptables. Para alcanzar esta meta, simplemente asigna un costo arbitrariamente grande representado mediante la letra M . M es un número tan grande que si se le resta un número  finito cualquiera, queda todavía un valor mayor que los demás.
 
 
Cuando la oferta y la demanda son desiguales, se asigna una actividad ficticia con un costo de cero para mantener la condición de método que deben ser igual número de ofertas y demandas
2.  Problemas de maximización.
Considere un problema de asignación en el que la respuesta a cada asignación es una utilidad en vez de un costo. Considere la matriz de utilidades del problema como la característica nueva la cual consiste en que el número que aparece en cada celdilla representa un beneficio en lugar de un costo.
3.  Problemas con asignación inaceptable.
Supóngase que se está resolviendo un problema de asignación y que se sabe que ciertas asignaciones son inaceptables. Para alcanzar esta meta, simplemente asigna un costo arbitrariamente grande representado mediante la letra M . M es un número tan grande que si se le resta un número  finito cualquiera, queda todavía un valor mayor que los demás.
 

domingo, 14 de octubre de 2012

EL TEOREMA DE PITÁGORAS, MEJOR EXPLICACIÓN

Teorema de Pitágoras establece que en un triángulo rectángulo, el cuadrado de la hipotenusa (el lado de mayor longitud del triángulo rectángulo) es igual a la suma de los cuadrados de los catetos (los dos lados menores del triángulo, los que conforman el ángulo recto).
Teorema de Pitágoras
En todo triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos.

Pitágoras de Samos
Si un triángulo rectángulo tiene catetos de longitudes  a \, y  b \,, y la medida de la hipotenusa es  c \,, se establece que.
  c^2 = a^2 + b^2 \,
De la ecuación  se deducen fácilmente 3 corolarios de aplicación práctica:
Pitágoras ( c²=a²+b² ) – Fórmulas prácticas
 a = \sqrt {c^2 - b^2}  b= \sqrt{c^2-a^2}  c = \sqrt {a^2 + b^2}

En un triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los otros dos lados (llamamos "triángulo rectángulo" a un triángulo con un ángulo recto)


Entonces, el cuadrado de a (a²) más el cuadrado de b (b²) es igual al cuadrado de c (c²):
a2 + b2 = c2

¿Seguro... ?

Veamos si funciona con un ejemplo. Un triángulo de lados "3,4,5" tiene un ángulo recto, así que la fórmula debería funcionar.
Teorema de Pitágoras
Veamos si las áreas son la misma:
32 + 42 = 52

Calculando obtenemos:
9 + 16 = 25


¡sí, funciona!

¿Por qué es útil esto?

Si sabemos las longitudes de dos lados de un triángulo con un ángulo recto, el Teorema de Pitágoras nos ayuda a encontrar la longitud del tercer lado. (¡Pero recuerda que sólo funciona en triángulos rectángulos!)

¿Cómo lo uso?

Escríbelo como una ecuación:
Triángulo abc a2 + b2 = c2

Ahora puedes usar álgebra para encontrar el valor que falta, como en estos ejemplos:
Triángulo rectángulo
a2 + b2 = c2
52 + 122 = c2
25 + 144 = 169
c2 = 169
c = √169
c = 13
Triángulo rectángulo
a2 + b2 = c2
92 + b2 = 152
81 + b2 = 225
Resta 81 a ambos lados
b2 = 144
b = √144
b = 12

LA REGAL DE 3 MEJOR EXPLICACION

La regla de tres o regla de tres simple es una forma de resolver problemas de proporcionalidad entre tres o más valores conocidos y una incógnita. En ella se establece una relación de linealidad (Proporcionalidad) entre los valores involucrados.
Regla de tres es la operación de hallar el cuarto término de una proporción conociendo los otros tres.
La regla de tres más conocida es la regla de tres simple directa, si bien resulta muy práctico conocer la regla de tres simple inversa y la regla de tres compuesta, pues son de sencillo manejo y pueden utilizarse para la resolución de problemas cotidianos de manera efectiva.

Consiste en que dadas dos cantidades correspondientes a magnitudes directamente proporcionales, calcular la cantidad de una de estas magnitudes correspondiente a una cantidad dada de la otra magnitud.
Regla de tres  directa

La regla de tres directa la aplicaremos cuando entre las magnitudes se establecen las relaciones:
A más flecha más.
A menos flecha menos.

Ejemplos

Un automóvil recorre 240 km en 3 horas. ¿Cuántos kilómetros habrá recorrido en 2 horas?
Son magnitudes directamente proporcionales, ya que a menos horas recorrerá menos kilómetros.
240 kmflecha 3 h
x   km  flecha 2 h
proporción
Ana compra 5 kg de patatas, si 2 kg cuestan 0.80 €, ¿cuánto pagará Ana?
Son magnitudes directamente proporcionales, ya que a más kilos, más euros.
2 kgflecha 0.80 €
5   kg  flechax €
proporción

sábado, 13 de octubre de 2012

Diagrama de Venn

Los diagramas de Venn son ilustraciones usadas en la rama de la Matemática y Lógica de clases conocida como teoría de conjuntos. Estos diagramas se usan para mostrar gráficamente la agrupación de cosas elementos en conjuntos, representando cada conjunto mediante un círculo o un óvalo. La posición relativa en el plano de tales círculos muestra la relación entre los conjuntos. Por ejemplo, si los círculos de los conjuntos A y B se solapan, se muestra un área común a ambos conjuntos que contiene todos los elementos contenidos a la vez en A y en B. Si el círculo del conjunto A aparece dentro del círculo de otro B, es que todos los elementos de A también están contenidos en B.

Esencialmente, se conoce al diagrama de Venn como una forma de mostrar de manera gráfica, una agrupación de elementos según los conjuntos, siendo representado cada conjunto con una circunferencia. Esta clase de gráficos se emplean en la Teoría de Conjuntos, dentro de las matemáticas modernas y nos explica el funcionamiento de un conjunto de elementos al realizar alguna operación con ellos.
Diagramas de Venn
La posición en que estén dispuestas las circunferencias, nos mostrará el vínculo que existe entre los conjuntos.
En la imagen de abajo, vemos cómo los círculos del grupo A y el B se encuentran solapados, poseyendo un área en común que comparten ambos grupos y en la que se encuentran todos los elementos del conjunto A y B.
diagrama de venn Teoria de los Conjuntos matematicas
En la imagen de abajo, el círculo del grupo A se haya dentro del círculo B, de manera que todos los componentes de B también se encuentran contenidos en A.
diagrama de venn circulos circunferencias
El nombre de estos diagramas fue designado en honor a su autor, John Venn, que era un matemático y filósofo británico. John expuso por primera vez este diagrama en 1880, apareciendo en el artículo “De la representación mecánica y diagramática de proposiciones y razonamientos” e inspirándose inicialmente en el cálculo de clases de Boole.

Media Aritmética

En matemáticas y estadística, la media aritmética (también llamada promedio o simplemente media) de un conjunto finito de números es el valor característico de una serie de datos cuantitativos objeto de estudio que parte del principio de la esperanza matemática o valor esperado, se obtiene a partir de la suma de todos sus valores dividida entre el número de sumandos. Cuando el conjunto es una muestra aleatoria recibe el nombre de media muestral siendo uno de los principales estadísticos muestrales.

Expresada de forma más intuitiva, podemos decir que la media (aritmética) es la cantidad total de la variable distribuida a partes iguales entre cada observación.

Por ejemplo, si en una habitación hay tres personas, la media de dinero que tienen en sus bolsillos sería el resultado de tomar todo el dinero de los tres y dividirlo a partes iguales entre cada uno de ellos. Es decir, la media es una forma de resumir la información de una distribución (dinero en el bolsillo) suponiendo que cada observación (persona) tuviera la misma cantidad de la variable.
También la media aritmética puede ser denominada como centro de gravedad de una distribución, el cual no está necesariamente en la mitad.

Una de las limitaciones de la media aritmética es que se trata de una medida muy sensible a los valores extremos; valores muy grandes tienden a aumentarla mientras que valores muy pequeños tienden a reducirla, lo que implica que puede dejar de ser representativa de la población.

Método integral por partes

El método de integración por partes permite calcular la integral de un producto de dos funciones aplicando la fórmula:
fórmula de la integral por partes
Las funciones logarítmicas, "arcos" y polinómicas se eligen como u.
Las funciones exponenciales y trígonométricas del tipo seno y coseno, se eligen como v'.

Ejemplos

integral
derivar
integrar
solución

Si al integrar por partes tenemos un polinomio de grado n, lo tomamos como u y se repite el proceso n veces.
integral
derivar
integrar
integral
derivar
integrar
integral
operaciones
derivar
integrar
integral
solución

Si tenemos una integral con sólo un logaritmo o un "arco", integramos por partes tomando: v' = 1.
integral
derivar
integrar
integral
solución

Si al integrar por partes aparece en el segundo miembro la integral que hay que calcular, se resuelve como una ecuación.
integral
derivar
operaciones
integrar
derivar
integrar
integral
integral
integral
integral
integral